
 

Practical Scheduling Algorithms for High-
Performance Packet Switches* 

 
Lotfi Mhamdi and Mounir Hamdi 

Department of Computer Science 
Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong 
Email: lotfi@cs.ust.hk 

 
Abstract— As buffer-less scheduling algorithms reach their 
practical limitations due to higher port numbers and data rates, 
buffered crossbars have gained a lot of interest recently because 
of the great potential they have in solving the complexity and 
scalability issues faced by their buffer-less predecessors. In 
particular, the internally buffered switching architecture was 
shown, through distributed scheduling algorithms, to be able to 
sustain the current and expected increases in Internet throughput 
rates. 

In this paper, we propose a class of distributed scheduling 
algorithms for the internally buffered crossbar switching 
architecture. As will be shown, the distributed nature of these 
algorithms makes them of high practical value. That is, they can 
be implemented in real-time for high-speed input traffic. In 
addition, we will demonstrate, through simulation, that these 
scheduling algorithms outperform state-of-the-art related 
algorithms in this area. 

 
Index terms—scheduling, internally buffered fabric. 

I. INTRODUCTION∗∗∗∗ 
Input queued switches (IQ) are desirable because they are 

scalable and they do not require internal speed up. With the 
benefit of input queues, or buffers, used to store those 
unselected cells or packets while awaiting the appropriate output 
destination, the switch core has the same speed as the input 
ports. It is well known that, if FIFO queues are used to hold 
arriving packets, head-of-line (HoL) blocking problem limits the 
throughput to only 58,6%[1]. HoL blocking problem can be 
entirely overcome by maintaining separate queues, one for each 
output. This queuing system is called Virtual Output Queuing 
(VOQ) [2]. Adopting VOQ architecture, if a packet arrives at an 
input port, it is held in the VOQ corresponding to its outgoing 
port, avoiding the possibility of being blocked by other packets, 
ahead of it, corresponding to a busy output.  

A plethora of algorithms has been proposed for scheduling 
VOQ crossbar-based switches. Maximum weight matching 
algorithms such as Longest Queue First (LQF) and Oldest Cell 
First (OCF) were proposed and have been proven to be stable 
for any admissible input traffic [3]. Unfortunately, the high 
complexity of these MWM algorithms makes them of no 
practical use since it prohibits the switch from scaling to large N 
(N is the switch size). Maximal size matching schemes were 

                                                 
∗ This work was supported in part by the Hong Kong Research Grant Council 

(Grant Number:  RGC HKUST6181-01E). 

then proposed and considered as an alternative to MWM 
schemes. Examples include iSLIP [4], FIRM [5] and SRR [6]. 
These algorithms are based on the so-called request-grant-accept 
steps. The performance using just one iteration is usually not 
good enough to achieve good performance. While these 
algorithms yield 100% throughput under uniform traffic, they 
perform much less under non-uniform traffic pattern.  

Buffered Crossbar Switches (BCS) have been considered as a 
viable alternative to buffer-less crossbar switches to improve the 
switching performance. While there have been many 
architectures for the (BCS) [7][8][9], our focus in this article is 
on BCS with VOQ. A buffered crossbar switch combined with 
input VOQ was first introduced in [10]. In the rest of this article, 
we will refer to this architecture as VOQ/BCS. It was proved in 
[11] that 100% throughput could be achieved under uniform 
traffic. 

The VOQ/BCS architecture, Fig. 1, has significant advantages 
over the buffer-less architecture. This is irrespective of the 
scheduling algorithm used for arbitration. In [10], an OCF input 
and output scheduling scheme was used. While this scheme 
achieves high throughput under uniform Bernoulli arrivals, the 
same benefits were not achieved for the non-uniform case. A 
scheme using round robin was described in [11], and was shown 
through simulation, to achieve very good performance. This 
scheme is desirable because of its simplicity, but experienced 
the same problem as in [10] and performs poorly under non-
uniform traffic patterns. A scheme based on the LQF in the 
input and a round robin arbitration a the output was presented in 
[12] and was proven, through a fluid model, to be stable under 
any admissible input traffic that obeys the strong law of large 

. . .

N 1

N

1 1

N

. . .. . .

. . .
. . .

1 N

Arbiter Arbiter

A
rbiter

A
rbiter

. . .

 
Figure 1.  The VOQ/BCS Architecture. 

1659
0-7803-7802-4/03/$17.00 © 2003 IEEE



 

numbers. In addition to its quite complex input scheduling 
(LQF), this scheme may lead to permanent queue starvation. 

In this paper, we introduce a class of practical scheduling 
algorithms for the VOQ/BCS. They are named Current Arrival 
First–Priority ReMoVal (CAF-PRMV). These algorithms are, in 
fact, an approximation of LIFO (Last-In-First-Out).  Their main 
advantage lies in their stateless information exchange (queue 
occupancies, HoL waiting time, etc.) making them simple to 
implement. As will be shown through simulation, they achieve 
very high throughput under both uniform and non-uniform 
distributed Bernoulli arrivals. They outperform the existing 
algorithms under all traffic patterns (uniform Bernoulli, bursty 
and non-uniform Bernoulli arrivals). In addition to the delay 
throughput performances, other relevant performance metrics 
were studied such as input VOQs occupancies. Our scheme has 
much less queues occupancies among all the schemes presented. 

The rest of the paper will be as follows: the following section 
contains a presentation of the existing scheduling schemes. Then 
we present the group of our new CAF-PRMV algorithms in 
section III. The simulation results will then be given in section 
IV. Finally, section V concludes the paper.   

II. EXISTING SCHEDULING ALGORITHMS 

Recently, there has been an increasing interest in the 
VOQ/BCS architecture. In [11], a round robin scheme has been 
presented in both the input and the output scheduling. This 
scheme is simple in implementation, fair and achieves 100% 
throughput under Bernoulli traffic. The main problem with this 
scheme is that it doesn’t perform well under non-uniform traffic 
patterns and can’t achieve high throughput. A scheme consisting 
of Oldest Cell First (OCF) at both input and output scheduling 
was presented in [10]. Even though it is more complex than that 
of the round robin scheme, unfortunately the OCF-OCF 
performance was the same as that of RR-RR. An input 
scheduling algorithm based on Longest Queue First (LQF), 
followed by a round robin output scheme was presented in [12]. 
The LQF-RR scheme performs well. It was proven to be stable 
under any admissible input traffic that obeys the strong law of 
large numbers. However, as with the buffer-less crossbar case, 
LQF may lead to permanent starvation of nonempty queues. To 
see this, let’s consider a 2x2 switch with VOQ0,0 = 2, VOQ0,1 = 
1,  VOQ1,0 = 1,  VOQ1,1 = 2. Consider that XPi,j=0, ∀ 0 ≤ i,j ≤ N-
1, and continuous arrivals occur to VOQ0,0 and VOQ1,1  
respectively. VOQ0,0 and VOQ1,1 will be always selected for 
input scheduling and XP0,0 and XP11 will be always selected for 
the output scheduling.  Then VOQ0,1 and VOQ1,0  will remain 
unserved indefinitely. Moreover, as we mentioned earlier, the 
VOQ/BCS has key advantages that can serve to ensure that the 
scheduling algorithm can be simple and efficient at the same 
time. So far, both OCF and LQF schemes require sorting – to 
compute the oldest cell or for computing the longest queue 
respectively—which is undesirable.  

As we will see in the next section, our proposed algorithms 
are simple in implementation, and don’t require sorting. In fact, 
our algorithms are stateless and do not use any kind of state 
information in order to make a scheduling decision. Yet, they 

are capable of extremely good performance with 100% 
throughput under uniformly distributed as well as non-uniformly 
distributed traffic arrivals. They outperform all previously 
presented schemes under many traffic patterns. 

III.  THE CURRENT ARRIVAL FIRST-PRIORITY 
REMOVAL ALGORITHMS 

In this section, we propose our group of new algorithms: 
Current Arrival First-Priority Removal (CAF-PRMV). These 
algorithms are an approximation of LIFO. The input scheduling 
gives priority to the new arriving packets while the output 
scheduling completes this task by serving the recently arrived 
packets to the internal buffer. The intuition behind this is to 
overcome the lack of performance under the non-uniform traffic 
without using any weight functions or state information. The 
existing algorithms either perform poorly under non-uniform 
traffic or require sorting. The idea of serving the newly arriving 
cells favors the input that has more often cells coming in and 
didn’t punish the uniformly arriving cells, hence tackle the non-
uniform traffic while being stateless. From above, we knew that 
an input (respectively output) scheduling scheme couldn’t 
perform well so long as it is not matched with the appropriate 
output (respectively input) scheduling scheme. To this end, 
CAF-PRMV was designed to be a matched pair of input/output 
scheduling. That is the output scheduling, PRMV, is 
complementary to the input scheduling, CAF. To better 
understand this, some different schemes are presented and will 
be analyzed.  The input scheduling, CAF, will remain the same, 
the changes are done at the output side. First, we give some 
terminology that will be used in the rest of this article. 

A. Terminology 
As shown in Fig.1, the VOQ/BCS switch architecture consists 

of N input cards, with each one maintaining N VOQs, one per 
output. The fabric part is the main characteristic of the 
VOQ/BCS and this differentiates it from the IQ/VOQ 
architecture.  Fixed size packets, or cells, are considered. Upon 
their arrival to the switch, variable length packets are segmented 
into cells for internal processing and re-assembled before they 
leave the switch. A processing cycle has fixed length, called cell 
or time slot.  

There are N input cards; each one maintains N logically 
separated VOQs. When a packet, destined to output j, 0 ≤ j ≤ N-
1, arrives to the input card i, 0 ≤ i ≤ N-1, it is held in VOQi,j. A 
VOQi,j is said to be eligible for being scheduled in the input 
scheduling process if it is not empty and the internal buffer XPi,j 
is empty (or not full).  

The internal fabric consists of N2 buffered crosspoints (XP). 
Each crosspoint has one-cell buffer. A crosspoint XPi,j, holds 
cells coming from input i and going to output j. 

The crosspoint buffer XPBi is set of the internal buffers (XPi,0 
+…+ XPi,N-1) that corresponds to the same input, i, and holding 
cells for all outputs. Likewise, XPBj is the set of the internal 
buffers (XP0,j +…+ XPN-1,j) that corresponds to the same output, 
j, and receiving cells from all inputs. LXPBj is the number of 
cells held in XPBj. 

1660



 

B. Specification of CAF 
At each time slot, the Current Arrival First (CAF) algorithm 

checks if there is a new cell arriving at the input port. To 
accomplish this task in the output scheduling, CAF assigns a 
priority level to each cell leaving the input port. This level will 
decide the priority (urgency) of that cell in the output scheduling 
phase. The use of priority levels is an efficient choice. First, the 
output-scheduling phase will be much simpler and faster than 
sorting for example. Second and most importantly, the adoption 
of priority levels makes the implementation easy and the 
hardware requirement simple. The specification of the input 
scheduling CAF is as follows: 

For each input i: 
If    there is a currently arriving packet, P, to an eligible VOQi,j  

Then send its HoL packet to XPi,j With two priority bits as 
follows:  

 If VOQi,j contains other packet(s) than P 
Then set the two priority bits to 111. 
Else set the two bits to 10.  

Else based on the highest priority pointer location, serve the next 
eligible VOQi,j corresponding to min(LXPBj). The highest 
priority pointer is incremented (modulo N) to one location 
beyond the selected input VOQi,j. 

 If VOQi,j contains other packet(s) than P 
Then set the two priority bits to 01. 
Else set these bits to 00.  

We can see that the two priority bits create four priority levels 
for a packet. Thus, when a packet, P, leaves the input card, it has 
along with it its priority level for being scheduled in the output 
scheduling phase. According to these priority levels, a packet 
could be new with a nonempty corresponding input VOQi,j 
(priority 11), or it could be not new “old” with nonempty 
corresponding input VOQi,j (priority 10), or it could be new but 
with empty corresponding input VOQi,j (priority 01), or it could 
be not new with empty corresponding input VOQi,j (priority 00). 
These priority levels are summarized in the following table.  

TABLE I.  PRIORITY LEVEL OF A PACKET. 
Priority 

Level 
Nonempty VOQ New 

Packet 
P1 1 1 
P2 1 0 
P3 0 1 
P4 0 0 

From the table above, many combinations could be 
envisioned (4!). However, to perfectly accomplish the task of 
the input scheduling, CAF, many combinations should be 
eliminated. For example, priority level P4 can only be the lowest 
level. This is because any output scheduling which gives priority 
to an old internally buffered cell with empty corresponding 
input VOQ can’t help CAF doing its job. Since the input VOQ 
is empty, there should be no rush in getting out that cell (queue 
stable and not congested). It is more urgent to send out any other 
packet with non-empty input VOQ. On the other hand, priority 
level number one (P1) can only be the highest priority among 

                                                 
1 The first bit means that the packet, P, is new, while the second bit indicates 

the occupancy of the VOQi,j holding P. 

the four priority levels. This is because any output scheduling 
scheme which favors any priority level to the first one, leads to a 
decrease in the performance of CAF, and therefore will not be 
appropriate. An internally queued packet that comes from a busy 
input VOQ (having currently new packet coming in) should be 
sent out urgently. This avoids the VOQ from being congested or 
unstable. Doing so, there are only 2! different combinations left 
(depending on P2 and P3 ranking of table I ) and are as follows: 
• C1 = (P1,P2,P3,P4): using this combination means that 

packets are served based on the priority order2 P1, P2, P3, 
and P4. 

• C2 = (P1,P3,P2,P4): using this combination means that  
packets are served based on the priority order P1, P3, P2, 
and P4. 

The output scheduling PRMV will then be consisting of two 
different schemes depending on the combination used. These 
two schemes are called PRMV1 and PRMV2, respectively. 

C. Specification of PRMV1  
The specification of the output scheduling PRMV1 is as 

follows: 
For each output j: Starting from the highest priority pointer’s 

location, select the next nonempty internal buffer XPi,j giving 
preference based on C1. The highest priority pointer is 
incremented (modulo N) to one location beyond the selected 
internal buffer (XPi,j).    

D. Specification of PRMV2  
The specification of the output scheduling PRMV2 is as 

follows: 
For each output j: Starting from the highest priority pointer’s 

location, select the next nonempty internal buffer XPi,j giving 
preference based on C2. The highest priority pointer is 
incremented (modulo N) to one location beyond the selected 
internal buffer (XPi,j).   

E. PRMV Variations 
In this section, two other versions of PRMV are investigated. 

Recall that the input scheduling and the output scheduling are 
performed independently. As shown before, when a packet, P, is 
scheduled at the input, it takes along with it two priority bits 
which will decide its priority for being scheduled in the output 
scheduling phase. However, the priority bit relative to the state 
of VOQi,j that used to hold P might not be accurate.  To see this, 
let’s consider the following example: suppose that the current 
time slot is Tnow. Suppose a packet P has entered the switch at 
time Tpast and was scheduled in the input scheduling during the 
same time slot, Tpast, --since CAF favors newly arriving cells-- 
and its VOQi,j was empty at time Tpast. Therefore, its two priority 
bits are set to 10 (1: new packet and 0: empty VOQ). Thus, 
during each time slot T, Tpast ≤ T ≤ Tnow, so long as P is still in 
the internal buffer, XPi,j, it is considered as having an empty 
corresponding input VOQi,j. However, VOQi,j might receive new 
cells during the time interval [Tpast+1, Tnow]. With this situation 

                                                 
2 The highest priority level is inversely proportional to the priority level index 

that is, P1 is the highest and P4 is the lowest. 

1661



 

being happening, P is treated unfairly among other packets since 
its priority levels do not match the reality. To avoid this 
problem, an alternative to PRMV was proposed. The idea is that 
the bit that records the state of a VOQi,j is set at the moment of 
the output scheduling and not during the input scheduling. 
Proceeding this way solves the inaccuracy problem. One way to 
do this is by checking the corresponding input VOQi,j of every 
internally buffered packet that is considered for an output 
scheduling. Therefore, we have the following two new versions 
of PRMV, called Pr_Check1, Pr_Check2 one for each priority 
scheme.  

1) Specification of Pr_Check1  
The specification of the output scheduling Pr_Check1 is as 

follows:  
At each time slot, T, Do 
For each output j: Starting from the highest priority pointer’s 

location, select the next nonempty internal buffer XPi,j giving 
preference based on C1. The highest priority pointer is 
incremented (modulo N) to one location beyond the selected 
internal buffer (XPi,j).   

2) Specification of Pr_Check2  
The specification of the output scheduling Pr_Check2 is as 

follows:  
At each time slot, T, Do 
For each output j: Starting from the highest priority pointer’s 

location, select the next nonempty internal buffer XPi,j giving 
preference based on C2. The highest priority pointer is 
incremented (modulo N) to one location beyond the selected 
internal buffer (XPi,j).    

While Pr_Check seems to be better than PRMV, this solution 
is not a practical solution. The reason is that the output 
scheduler needs to perform a checking cycle during each time 
slot. This is undesirable due to the time wasted during the 
checking phase and the amount of information exchanged. 
Moreover, Pr_Check, performs slightly better than PRMV and 
the difference is only seen under light load. However, under 
heavy load, their performances are very close, due to steady 
state of the VOQs. This means that under heavy load, almost all 
the VOQs have more than one packet during each input 
scheduling cycle and therefore the unfairness problem is almost 
self-removed. 

IV.   PERFORMANCE STUDY 

We evaluated our proposed scheduling algorithms using 
extensive simulation experiments. The simulation results are 
gathered from a 32x32 switch. Delay is measured as the period 
of time a cell spends waiting in an input/output/internal buffer 
before being scheduled. Each point in the resulting figures is 
obtained for 500,000 time slots (cell time), and the statistics are 
gathered from the 50,000th time slot. The performance 
evaluation is done using three traffic models: Bernoulli uniform, 
bursty and non-uniform traffic. We define the non-uniform 
(unbalanced) traffic by using an unbalanced probability w. 
Consider the traffic load ρ for each input port. Then, for each 
input port s, and output port d, the traffic load, ρs,d , is given by:    










−

=
−

+
=

otherwise               
N

d sif        )
N

ds ω
ρ

ω
ωρ

ρ
1

1
(

,
 

When w=0, the offered load is uniform, and when w=1, the 
offered load is completely unbalanced.  

A stability performance study was carried out along with the 
delay study. As was presented in [3], the input queues 
occupancies can serve to prove the stability of the scheduling 
algorithm. That is, if under a service policy (scheduling 
algorithm) X, one can show that E(||L(n)||) < ∞,1 he can 
conclude that X is stable. ||L(n)|| is the l-two norm vector 
representing the occupancy of the VOQs a time n and defined as 
follows: 

2
,

2
1,

2
,1

2
1,1 )(....)(...)(...)(||)(|| nQnQnQnQnL NNNN ++++++= .  

In this section, we just present, through simulation, the 
occupancy of the VOQs under the above-mentioned scheduling 
algorithms. This study can be used to find a practical upper 
bound on the input buffer space that a scheduling algorithm 
needs to prevent congestion. 

Fig.2 shows the performance evaluation of the iSLIP, for non-
buffered crossbar, the RR-RR, LQF-RR, and OCF-OCF along 
with our group of proposed algorithms. The performance of 
iSLIP is very low when compared to all the buffered crossbar 
algorithms. All our proposed algorithms have shorter queuing 
delay than all existing schemes. CAF-Pr_Check has the best 
performance among all, with very small difference when 
compared to CAF-PRMV1. 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Norm alized Load

3 2 x3 2  S witch und e r B e rno ulli Unifo rm  T raf f ic

Caf-P rm v1     
Caf-P rm v2     
Caf-P r_Chec k 1
Caf-P r_Chec k 2
Lqf-Rr        
RR-RR         
O c f-O c f       
iS LIP          

 
Figure 2.  Average Delay under Bernoulli I.I.D. uniform traffic. 

 
As for the performance under bursty traffic, Fig.3, Our group 

of proposed algorithms has the best performance among all the 
algorithms tested. The largest delay among our algorithms was 
always under 800. However, the delay for LQF-RR and OCF-
OCF is more than 900 each, and RR-RR is 888. 

Fig.4 shows the stability performance of the input VOQs 
under bursty traffic. CAF-Pr_Check2 has the worst performance 
among all. The reason of this low performance is due to the 
highest priority given to the new arriving packet irrespective of 

                                                 
1 The expected value of the l-two norm vector, L(n), representing the input VOQs 

occupancy is finite. 

1662



 

the state of its VOQ. However, in the event of no arrivals, CAF 
serves packets based on the minimum occupied internal buffer. 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
1

10
2

10
3

A
ve

ra
ge

 D
el

ay

Norm alized Load

32x32 Switch under Bursty Traffic

Caf-Prmv1     
Caf-Prmv2     
Caf-Pr_Check1
Caf-Pr_Check2
Lqf-Rr        
RR-RR         
Ocf-Ocf       

 
Figure 3.  Delay performance under Bursty uniform traffic. 

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

500

1000

1500

2000

2500

3000

3500

L(
50

00
00

) 

Normalized Load

32x32 under Bursty Traffic

Caf-Prmv1     
Caf-Prmv2     
Caf-Pr_Check1
Caf-Pr_Check2
Lqf-Rr        
RR-RR         
Ocf-Ocf       

 
Figure 4.  VOQs Occupancies under Bursty uniform traffic. 

 
In Fig.5, the unbalanced coefficient, w, is fixed to 0.5. The 

output scheduling algorithms PRMV2 and Pr_Chech2 perform 
less than the others because they give priority to the newly 
coming packet irrespective of whether its VOQ is empty or not, 
and this is not appropriate to the input scheduling CAF. This is 
because, in many cases, CAF serves packets based on the 
minimum occupied internal buffer and not on the newly coming 
packet. Among all, CAF-Pr_Check1 has the best performance, 
thereafter CAF-PRMV1 and then LQF-RR and OCF-OCF. 

As for the VOQs occupancies, CAF-PRMV1 and CAF-
Pr_Check1 have the minimum queues occupancies among all 
the algorithms. Fig. 6 shows the VOQs occupancies under the 
unbalanced traffic pattern.   

 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 D
el

ay

Norm alized Load

32x32  S witch unde r Non-Unifo rm  T raff ic

Caf-P rm v1     
Caf-P rm v2     
Caf-P r_Chec k1
Caf-P r_Chec k2
Lqf-Rr        
RR-RR         
O c f-O c f       

 
Figure 5.  Delay performance under unbalanced traffic (w=0.5). 

0.3 0 .4 0.5 0.6 0 .7 0.8 0.9 1

0

50

100

150

200

250

300

350

400

450

500

L(
50

00
00

)

Norm aliz ed Load

3 2 x3 2  S witch und e r No n-Unifo rm  T raf f ic

Caf-P rm v1     
Caf-P r_Chec k 1
Lqf-Rr        
O c f-O c f       

 
Figure 6.  VOQs Occupancies under unbalanced traffic (w=0.5). 

V. CONCLUSION 

In this paper, we proposed a group of practical algorithms for 
the VOQ/BCS switch. We illustrated their performance by 
comparing them with the previously proposed algorithms. The 
simulation results showed that our newly proposed algorithms 
outperform state-of-art algorithms in this area. In particular, the 
CAF-PRMV1 algorithm performs very well under all traffic 
patterns, and was shown to be the best among all others. Its 
main advantage lies in the fact that it is totally stateless, which 
makes it simple in hardware implementation while running at 
very high speed.  

REFERENCES 
[1] M. Karol, M. Hluchyj, “Queuing in High-performance Packet-

switching,” IEEE J. Selected Area Communications, Vol. 6, pp. 1587-
1597, December 1988. 

[2] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High-speed Switch 
Scheduling for Local Area Networks,” ACM Trans. Comput. Syst., pp. 
319-352, Nov. 1993. 

[3] N. McKeown, A. Mekkittikul, V. Anantharam, J. Walrand. “Achieving 
100% throughput in Input-Queued Switch,” IEEE Trans. On 
Communications, Vol.47, No. 8 August 1999. 

[4] N. McKeown, “iSLIP Scheduling Algorithm for Input-Queued 
Switches,” IEEE/ACM Transactions on Networking, Vol.7, No.2, pp. 
188-201, April 1999. 

[5] D.N. Serpanos, P. I. Antoniadis, “FIRM: A Class of Distributed 
Scheduling Algorithms for High-Speed ATM Switches with Input 
Queues,” IEEE INFOCOM 2000. 

[6] Y. Jiang, M. Hamdi, "A fully desyncronized round-robin matching 
scheduler for a VOQ packet switch architecture," 2001 IEEE Workshop 
on High Performance Switching and Routing, 2001, pp. 407-411. 

[7] S. Nojima, E. Tsutsui, H. Fukuda, and M. Hashimmoto, “Integrated 
Packet Network Using Bus Matrix,” IEEE Journal on Selected Areas in 
Communications, Vol. 5, No. 8, pp.1284-1291, Oct. 1987. 

[8] A.K. Gupta, L. O. Barbosa, and N. D. Gorganas, “16x16 Limited 
Intermediate Buffer Switch Module for ATM Networks for B-ISDN,” 
GLOBECOM’91, pp.939-943, Dec. 1991.  

[9] A.K. Gupta, L. O. Barbosa, and N. D. Gorganas, “16x16 Limited 
Intermediate Buffer Switch Modules and Their Interconnection 
Networks for B-ISDN,” ICC’92, pp.1646-1650, June 1992. 

[10] M. Nabeshima, “Performance Evaluation of Combined   Input-and 
Crosspoint-Queued Switch,” IEICE Trans. Commun., Vol. E83-B, No.3 
March 2000. 

[11] R. Rojas-Cessa, E. Oki, and H. J. Chao, “CIXB-1: Combined Input One-
Cell-Crosspoint Buffered Switch,” Proceedings of the 2001 IEEE 
Workshop on High Performance Switching and Routing, 2001, pp. 271-
275. 

[12] T. Javadi, R. Magill, and T. Hrabik, “A high-Throughput Algorithm for 
Buffered Crossbar Switch Fabric,” Proceedings IEEE ICC, pp. 1581-
1591, June 2001. 

1663


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


